AAT
Name \qquad
4-1 Magnitudes of Rotations and Measures of Arcs

Date \qquad

Warm Up: Considering basic arithmetic, what are the pros and cons to using feet and inches to measure length? What about using centimeters and meters?

Introduction

A circle is the set \qquad on a plane that are a fixed \qquad from a point. A rotation is a transformation that " " the point along the circle. Label the image, preimage and center of rotation.

Revolutions and Degrees

Full Turn	Half Turn	Quarter Turn

Convert the following degrees to revolutions:
a. 720°
b. 200°
c. 400°
d. 1080°

AAT
4-1 Magnitudes of Rotations
A\#1 and Measures of Arcs

Questions The Case for Radians

Degrees and revolutions can tell about the size
\qquad but nothing about the
\qquad . Enter radians.

Common Conversions:

Degrees	0^{ϱ}	30^{ϱ}			90^{ϱ}	120^{ϱ}		150^{ϱ}	180^{ϱ}	360
Radians			$\frac{\pi}{4}$	$\frac{\pi}{3}$						
Revolutions							$\frac{3}{8}$			

Example 1:
a. Convert 1000 to radians exactly.
b. Convert $1000{ }^{\circ}$ to radians approximately.

Example 2: Convert 1 radian to degrees.

Example 3

Find the length of an arc of a 50° central angle in a circle of radius 6 feet.

Circle Arc Length Formula

If s is the length of the arc of a central angle of θ radians in a circle of radius r, then $s=r \theta$.

AAT
4-1 Magnitudes of Rotations
A\#1 and Measures of Arcs

| Example 4 | Questions |
| :--- | :--- | :--- |
| A swing hangs from chains that are 8 ft long. How far does the seat of the | |
| swing travel if it moves through an angle of 1.25 radians? | |
| | |
| Example 5: The swing height can be adjusted to accommodate a
 taller person by shortening the length of the ropes to 7 ft. How far
 would the seat of the swing travel if it moves through an angle of
 1.5 radians at the shorter length.
 | |

Summary:

$1 \mathrm{rev}=$		
$1 \mathrm{o}=$		
$1 \mathrm{rad}=$		
$\pi \mathrm{rad}=$		

AAT

4-1 Magnitudes of Rotations and Measures of Arcs

In 1 and 2, the magnitude of a rotation is given.
a. Convert the magnitude to revolutions.
b. On the circle draw the image of the given point under the rotation.

1. -225°

2. $\frac{7 \pi}{2}$
a.
b.

a. \qquad
b.

3. Give two other magnitudes in degrees, one positive and one negative, for a rotation of 152°.
4. Give two other magnitudes in radians, one positive and one negative, for a rotation of $\frac{5 \pi}{6}$.

In 5-7, convert to a magnitude in radians without using a calculator.
5. 30° \qquad 6. 45° \qquad 7. -240° \qquad

In 8-10, convert to a degree measure without using a calculator.
8. $\frac{\pi}{10}$ \qquad 9. $\frac{11 \pi}{6}$ \qquad 10. 3.14159 \qquad

In 11-14, convert the given magnitude to the indicated unit to the nearest thousandth.
11. -37°
a. to revolutions
b. to radians
\qquad
12. 17π
a. to revolutions
13. 17
a. to degrees
b. to radians
14. $0 . \overline{3}$ revolution clockwise
a. to degrees
b. to radians

